

ФГУП «Крыловский государственный научный центр» Санкт-Петербург

Контроль коррозионного разрушения турбинных лопаток с помощью нейтронно-активационного анализа

А.З. БагерманД.С. ГришинА.В. КонопатоваА.И. ЛайкинИ.П. Леонова

Цель работы

Оценка возможности использования нейтронно-активационного анализа для измерения малых количеств продуктов коррозии турбинных лопаток на стадии разработки для них защитных покрытий.

Решаемая задача

В настоящей работе проведена оценка возможности нейтронноактивационного анализа для измерения концентрации <u>хрома</u>, появляющегося за счет вымывания продуктов его коррозии из под керамического покрытия через микротрещины и другие нарушения защитного покрытия, в дистиллированной обессоленной воде после кипячения в ней турбинных лопаток.

Методика выполнения работы

- 1. Подготовка образцов воды: после кипячения турбинных лопаток, после кипячения воды без лопаток, калибровочного образца раствора с известной концентрацией хрома.
- 2. Облучение образцов в контролируемых условиях тепловыми и быстрыми нейтронами в экспериментальных каналах исследовательского ядерного реактора.
- 3. Измерение активности образовавшихся в облученных образцах радионуклидов с помощью низкофонового гамма-спектрометра.
- 4. Оценка возможности данного метода для решения поставленной задачи.

Оценка чувствительности метода нейтронно-

активационного анализа

Минимально обнаружимая масса чистого элемента на 1 г образца при плотности потока тепловых нейтронов 10 ¹¹ с ⁻¹ см ⁻² , г	Элемент
10-11	Dy, Eu
$10^{-11} - 10^{-10}$	In, Lu, Mn
$10^{-10} - 10^{-9}$	Au, Ho, Ir, Re, Sm, W
10 ⁻⁹ - 10 ⁻⁸	Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, V, Yb
10-8 - 10-7	Al, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd, Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr
10-7 - 10-6	Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y
10-6 - 10-5	F, Fe, Nb, Ne
10-4	Pb, S

Экспериментальное оборудование

Диапазон энергетической мощности реактора: 10⁻² – 5·10⁴ Вт

Удельные плотности потока тепловых <u>нейтронов:</u>

<u>Выкатной короб:</u> до **1,36·10⁶ с⁻¹см⁻²Вт⁻¹**

<u>Центральный экспериментальный канал:</u> 4,64·10⁷ с⁻¹см⁻²Вт⁻¹

<u>Радиальный канал:</u> 2,4·10⁷ с⁻¹см⁻²Вт⁻¹

Многоцелевой исследовательский ядерный реактор У-3

<u>Тангенциальный канал:</u> 1,01·10⁷ с⁻¹см⁻²Вт⁻¹

Экспериментальное оборудование

Рабочий диапазон энергий регистрируемого гамма-излучения – от 40 до 3000 кэВ

Энергетическое разрешение по линии гаммаизлучения с энергией 1332,2 кэВ радионуклида ⁶⁰Со – 1,88 кэВ

Эффективность регистрации по пику полного поглощения гамма-квантов с энергией 1332,2 кэВ радионуклида ⁶⁰Со от точечного источника типа ОСГИ на расстоянии 5 см по оси от торцевой поверхности кристалла – 1,0 %

Низкофоновый спектрометр гамма-излучения на основе полупроводникового детектора из сверхчистого германия типа GEM-80 (ORTEC)

Минимально обнаружимая активность радионуклида ¹³⁷Cs – 0,2 Бк за 1 час

Свинцовая защита толщиной стенок 200 мм

Проведение эксперимента

– Приготовление образцов (кипяченая дистиллированная обессоленная вода, дистиллированная обессоленная вода после кипячения в ней турбинных лопаток) и эталонного раствора хрома в воде, объем образцов – 20 мл, тара для образцов – виалы из полиэтилена высокого давления;

Облучение эталонного раствора хрома в воде в тангенциальном канале ИЯР У-3 при плотности потока тепловых нейтронов 10⁹ см⁻²с⁻¹ в течение 1 часа;

 Облучение пустой тары для образцов в тангенциальном канале ИЯР У-3 при плотности потока тепловых нейтронов 2.10¹¹ см⁻²с⁻¹ в течение 1 часа;

− Облучение образцов воды в тангенциальном канале ИЯР У-3 при плотности потока тепловых нейтронов 2·10¹¹ см⁻²с⁻¹ в течение 1 часа;

– Дозиметрический контроль эталонного раствора и образцов;

– Гамма-спектрометрический анализ тары, эталонного раствора и образцов.

Расчет массы хрома

$$m_{Cr} = \frac{n \cdot \mu}{\left(1 - e^{-\lambda \cdot t_{\hat{a}\hat{e}\hat{o}}}\right) \cdot e^{-\lambda \cdot t_{\hat{a}\hat{u}\hat{a}}} \cdot K} \cdot \frac{P_{Etalon}}{P_{Sample}}$$

m – масса хрома в образце, г;

n – скорость счета под пиком полного поглощения линии 320,07 кэВ, имп/с; μ – молярная масса изотопа ⁵⁰Cr, 50 г/моль;

 λ – постоянная распада изотопа ⁵¹Cr, 2,897·10⁻⁷ с⁻¹;

 t_{akm} – время активации образцов, 3600 с;

 $t_{_{выд}}$ – время выдержки образца от окончания облучения до начала измерения, с;

K – измеренный экспериментально коэффициент пересчета от скорости счета под пиком полного поглощения к массе хрома, учитывающий плотность потока тепловых нейтронов, эффективность регистрации гамма-излучения под пиком полного поглощения 320,07 кэВ, сечение реакции ⁵⁰Cr(n, γ)⁵¹Cr, и ядерную концентрацию изотопа ⁵⁰Cr в 1 моле природного хрома. Коэффициент *К* равен 3,558·10⁶ с⁻¹моль⁻¹ для спектрометра GEM-80;

*P*_{Etalon} – мощность реактора при облучении эталона, равная 100 Вт;
*P*_{Sample} – мощность реактора при облучении проб, равная 20 000 Вт.

Оценка масс других элементов

$$m_{x} = \frac{A \cdot \mu_{x}}{\sigma_{x} \cdot \varphi \cdot (1 - e^{-\lambda_{x} \cdot t_{\hat{a}\hat{e}\hat{o}}}) \cdot e^{-\lambda_{x} \cdot t_{\hat{a}\hat{u}\hat{a}}} \cdot N_{A} \cdot v_{Nat}}$$

 m_x – масса элемента в образце, г;

А – измеренная активность данного изотопа, Бк;

 σ_x – сечение взаимодействия тепловых нейтронов с измеряемым изотопом по реакции (n, γ) ;

 ϕ – плотность потока тепловых нейтронов, см⁻²с⁻¹

 μ_x – молярная масса данного изотопа, г·моль⁻¹;

 λ_x – постоянная распада данного изотопа, с⁻¹;

 $t_{a\kappa m}$ – время активации проб, 3600 с;

*t*_{выд} – время выдержки пробы между окончанием облучения и началом измерения, с;

 N_A – число Авогадро, 6,02·10²³ моль⁻¹;

*v*_{Nat} – процентное содержание данного изотопа в естественной смеси.

Полученные данные

Энергетический спектр гамма-излучения дистиллированной воды после кипятчения турбинной лопатки, через сутки после облучения; время экспозиции – 0,5 ч

Энергетический спектр гамма-излучения дистиллированной воды после кипячения турбинной лопатки, через 22 дня после облучения ; время экспозиции – 2 ч

Результаты

Концентрация хрома в воде после кипячения турбинных лопаток 0,5 · 10⁻⁶ ÷ 1,5 · 10⁻⁶ г/г ;

– Помимо хрома в образцах найдены следующие элементы: вольфрам, кобальт, молибден;

– Аргон, натрий, хлор и марганец присутствуют как в контрольных образцах (фоновых, без кипячения лопаток), так и в измеряемых образцах.

Выводы

Нейтронно-активационный анализ позволяет контролировать коррозионное разрушение турбинных лопаток с керамическим покрытием по наличию хрома и ряда других элементов (вольфрам, кобальт, молибден) в воде после из кипячения в ней;

— Минимально обнаружимая концентрация хрома в образце воды объемом 20 мл при облучении 1 час плотностью потока тепловых нейтронов 2·10¹¹ см⁻²с⁻¹ и выдержке в течение 20 дней за время измерения 2 часа составляет 3,5·10⁻⁸ г/г;

– Изотоп ⁴¹Ar образуется за счет облучении воздуха, содержащегося в виале (между зеркалом воды и крышкой), а также воздуха, растворенного в воде;

 Обессоленная дистиллированная вода содержит малое количество натрия (около 5.10⁻⁸ г/г) и хлора (около 10⁻⁷ г/г);

– Образцы воды после облучения необходимо выдерживать в течение нескольких дней, чтобы активность примесей (натрий, хлор, аргон) снизилась и не маскировала излучение изотопа ⁵¹Cr.

Спасибо за внимание

ФГУП «Крыловский государственный научный центр» 196158 Санкт-Петербург, Московское шоссе, 44 +7 (812) 415-46-07 <u>krylov@krylov.spb.ru</u>

> Лайкин Андрей Игоревич Гришин Денис Сергеевич +7 (812) 587-85-36